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EXECUTIVE SUMMARY 
 
Prior to launch, a spacecraft must have a test-validated finite element model (FEM) that can be 
used with confidence to predict structural loads, response, performance, etc.  The model 
validation process is comprised of several activities, such as test/analysis correlation using 
designated metrics, analytical model updating, uncertainty quantification, and determining 
predictive accuracy.  To date, finite element model correlation has usually been done in the 
modal domain using metrics dictated by agencies such as NASA and the United States Air Force.  
While an engineer may design a single structure based on drawings, analysis, and experimental 
results, the reality is that the item produced is just one in an ensemble of structures due to 
variations and uncertainties in geometry, material parameters, construction, etc.  The result is a 
random population of frequencies and mode shapes.  It is common practice to ignore the effects 
of both model and test uncertainty in model correlation.  However, if one does not examine test-
analysis correlation relative to uncertainty, very erroneous and dangerous decisions can be made 
regarding the models ability to make accurate predictions within untested regimes. 
 
In contrast, high-performance precision spacecraft proposed by both the Air Force will require 
models that are valid to a much higher frequency range for accurate predictions.  Within this 
higher frequency band, spacecraft are modally dense.  Due to the corresponding short 
wavelength vibration patterns, uncertainties have a very large influence on the structural 
response.  Uncertainty then plays an even more important role in modally dense systems at 
higher frequencies.  In addition, due to the high modal density, and the extreme sensitivity of the 
modes to uncertainty, accepted modal-based methods of model correlation, simply do not work.  
 
As space structures have evolved into larger and more complex systems, ground based vibration 
tests of the entire spacecraft can become either problematic or impossible.  In other situations, 
such as responsive spacecraft applications, there is no time to perform a full system vibration 
test.  In any case, if a full spacecraft test can be avoided, a great deal of time, effort, and money 
can be saved.  This represents a paradigm shift in space system model validation in which the 
spacecraft is validated on a substructure-by-substructure basis only.  Unavoidable uncertainty in 
substructure models, connections, and testing will have large, and possibly negative, impact on 
this new paradigm for model validation.  Within this new model validation paradigm, there is no 
system test data available; therefore strictly speaking, there can be no system model validation, 
or even correlation.  Instead, a probabilistic system correlation must be performed by quantifying 
uncertainty in the system’s substructures and their interfaces, and then propagating it into the 
system correlation metrics.  Several critical questions must be addressed, such as, what 
constitutes a correlated system model with respect to tolerance for failure, and how does 
uncertainty and error in the substructures propagate into, and affect the probability of system 
model correlation?   
 
The overall goal of this project was to develop a new systematic procedure for studying the 
effects of substructure uncertainty on the system test-analysis correlation of complex spacecraft 
that are validated on a substructure-by-substructure basis.  The uncertainty is quantified in terms 
of the difference between test and FEM correlation metrics. Due to its universal acceptance 
within the aerospace community, a Craig-Bampton based component mode synthesis and 
reduced order modeling approach was utilized.   
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The first research accomplishment was the development of methods to quantify the 
uncertainty of a substructure in terms of accepted modal test-analysis correlations metrics.  
For the low frequency regime, uncertainty in the substructures is quantified in terms of 
uncertainty in the substructure test-analysis correlation metrics, modal frequency and cross-
orthogonality.  The substructures are assumed to have been tested in a free-free configuration.  
Uncertainty in substructure modal mass and stiffness is related to the uncertainty in modal 
frequency and cross-orthogonality using linear perturbation methods.  The uncertainty is defined 
with respect to the nominal substructure FEM.  One of the main contributions of this work is the 
derivation of the form of the substructure modal mass and stiffness covariance matrices in terms 
of test- or truth/analysis correlation uncertainty using analytical and numerical experimentation 
results.  Using derived expressions, an analyst can compute covariance matrices for modal mass 
and stiffness by either specifying the variances of the natural frequencies, the generalized 
masses, and the off-diagonal terms in each column of the cross-orthogonality matrix, or this data 
can be based on available test data.  Conversely, once substructure is propagated into system 
level modal matrices, the inverse relations can be used to recover uncertainty in system level 
correlation metrics.  The developed theory was validated using extensive numerical 
experimentation.  A single numerical experiment consisted of Monte Carlo analysis, where at 
each iteration, the nominal FEM substructure mass and stiffness matrices were randomized using 
the Maximum Entropy approach.  A dispersion level is selected that can be thought of as being 
analogous to the global fractional uncertainty believed to exist in the matrix, and then the matrix 
is randomized subject to the constraints of maintaining symmetry and positive definiteness.  The 
advantage of this nonparametric approach, over the usual parameter sensitivity or perturbation 
methods, is that this randomization process automatically accounts for uncertainties that are not 
easily described by model parameters, such as model form, geometry, joints, etc.  Results 
showed that off-diagonal cross-orthogonality uncertainty terms are not only zero mean, but 
normally distributed, and within each column, independent.  However, off-diagonal terms are 
strongly correlated with the corresponding term across the diagonal.  Terms on the diagonal 
follow a generalized chi-square distribution.  Based on substructure off-diagonal cross-
orthogonality statistics, the 1!"( ) th percentiles can be computed for the diagonal cross-
orthogonality terms.  This allows the analyst to predict the probability of passing the specified 
test-analysis correlation criteria. 
 
The second research accomplishment was the development of methods to quantify the 
uncertainty of a substructure in terms of frequency response.  At higher frequencies, spacecraft 
become modally dense, and the usual modal correlation metrics become useless for uncertainty 
quantification.  Instead, the substructure uncertainty is quantified in terms of covariance and 
relation matrices associated with the differences in the test/truth and FEM frequency response.  
At the substructure level, the uncertainty can be obtained from a series of vibration tests and 
associated test-analysis correlations, a database of previous test-analysis correlation results of 
similar structures, specified by the user, etc.  Linear perturbation analysis and modal filters were 
used to derive expressions relating uncertainty in frequency response to uncertainty in modal 
impedance, relative to the nominal model modal basis.  Once the substructure uncertainty is 
propagated into the system level modal impedance, these same expressions can be inverted to 
recover the system level frequency response covariance and relation matrices.  These two 
matrices completely specify the second order statistical properties of the frequency response.  
Methods were then developed to recover uncertainty in system level frequency response 
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magnitude and phase. The developed theory was validated using extensive numerical 
experimentation. 
 
The third research accomplishment was the development of a new systematic approach for 
propagating substructure uncertainty into uncertainty in system level modal matrices.   
The objective is to be able to quantify the level of test-analysis correlation required at the 
substructure level to produce acceptable correlation for the system.  Once substructure modal 
matrix uncertainties are recovered using previously described metrics, linear covariance 
propagation is used to propagate uncertainty in substructures into the expected uncertainty in 
correlation for the system.  Due to its universal acceptance within the aerospace community, a 
Craig-Bampton based component mode synthesis and reduced order modeling approach was 
utilized.  It is standard in many finite element codes used by the aerospace community, and it is 
useful in this application because it neatly separates a substructure interface from its interior.  
Uncertainties in substructure modal matrices are first propagated into substructure Craig-
Bampton representation matrices.  In order to propagate uncertainty, the matrix equations must 
be put in the proper form using a vectorization approach, in which the columns of a matrix are 
stacked column-wise, combined with the use of Kronecker products, and oblique modal 
projectors.  The projectors spatially filter out any undesired modal contributions.  Memory 
requirements and computational effort can be minimized by taking advantage of the fact that 
both substructure and system matrices are symmetric.  Therefore, only lower triangular terms in 
uncertainty matrices must be propagated.  Redundant terms can be either removed or recovered 
using elimination and duplication matrices.  In the case of frequency response, quantifying 
uncertainty in terms of Craig-Bampton substructure matrices, and then propagating into the 
system using component mode synthesis, has a significant advantage over methods that use 
direct assembly of substructure frequency response, in that translations and rotations at 
substructure interfaces do not have to be measured.  Low and high modal density examples are 
investigated, and the results are substantiated using Monte Carlo analysis.  
 
The product of this project is a complete and systematic procedure for studying the effects of 
substructure uncertainty on the test-analysis correlation of complex spacecraft that are validated 
on a substructure basis.  In many situations, it is either impossible to perform a system vibration 
test, or it is highly desirable to avoid one to conserve time and resources.  Therefore, a 
probabilistic system correlation must be performed by quantifying uncertainty in the system’s 
substructures, and then propagating it into the system correlation metrics.  This work is 
significant to the Air Force because it must make critical decisions concerning space structure 
performance and survivability based on the results of test-analysis correlation.  
   
 
The work performed during this project was conducted by: 
 
Dr. Daniel C. Kammer, Professor 
Mr. Sonny A. Nimityongskul, Research Assistant 
Mr. Dimitri Krattiger, Research Assistant 
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PROPAGATION OF UNCERTAINTY FOR MODEL VALIDATION OF 
SUBSTRUCTURED SPACECRAFT 

 
1.0  INTRODUCTION 

Prior to launch, a spacecraft must have a test-validated finite element model (FEM) that can be 
used with confidence to predict structural loads, response, performance, etc.  The model 
validation process is comprised of several activities, such as test/analysis correlation using 
designated metrics, analytical model updating, uncertainty quantification, and determining 
predictive accuracy.  To date, finite element model correlation has usually been done in the 
modal domain.  Test and analysis modal frequencies are compared directly, while mode shapes 
are compared using orthogonality and cross-orthogonality computations.  The use of these 
metrics, and the required values for acceptable correlation, are dictated by agencies such as 
NASA and the United States Air Force.  The requirements differ, depending on the agency.  The 
Air Force, for example, requires test-analysis frequency errors less than or equal to 3.0%, cross-
generalized mass values greater than 0.95, and coupling terms between modes of less than 0.10 
in both cross-orthogonality and orthogonality. 
 
Recently, quantification of model uncertainty and its propagation through large numerical 
simulations has been the focus of investigation.  While an engineer may design a single structure 
based on drawings, analysis, and experimental results, the reality is that the item produced is just 
one in an ensemble of structures due to variations and uncertainties in geometry, material 
parameters, construction, etc.  The result is a random population of frequencies and mode shapes.  
Besides model uncertainty, there is a corresponding uncertainty and error in the measured test 
data.  In the low frequency regime of modal-based test-analysis correlation and model updating, 
it is common practice to ignore the effects of both model and test uncertainty.  However, if one 
does not examine test-analysis correlation relative to uncertainty, very erroneous and dangerous 
decisions can be made regarding the models ability to make accurate predictions within untested 
regimes. 
 
In contrast with most current applications, high-performance, precision space vehicles proposed 
by both the Air Force and NASA will need extremely low-level on-orbit vibration environments.  
Precision spacecraft require models that are valid to a much higher frequency range for accurate 
predictions.  Within this higher frequency band, the spacecraft is modally dense.  Due to the 
corresponding short wavelength vibration patterns, uncertainties have a very large influence on 
the structural response.  Uncertainty then plays an even more important role in modally dense 
systems at higher frequencies.  In addition, due to the high modal density, and the extreme 
sensitivity of the modes to uncertainty, the accepted modal-based methods of model correlation, 
such as cross-orthogonality, modal frequency comparisons, etc., simply do not work because 
modes cannot be differentiated.  Therefore, in this investigation, model uncertainty is quantified 
in terms of test-analysis frequency response comparisons. 
 
As space structures have evolved into larger and more complex systems, ground based vibration 
tests of the entire spacecraft can become either problematic or impossible.  In other situations, 
such as responsive spacecraft applications, there is no time to perform a full system vibration 
test.  In any case, if a full spacecraft test can be avoided, a great deal of time, effort, and money 
can be saved. This represents a paradigm shift in space system model validation in which the 
spacecraft is validated on a substructure-by-substructure basis only.  Unavoidable uncertainty in 
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substructure models, connections, and testing will have large, and possibly negative, impact on 
this new paradigm for model validation.  The research community has started to investigate the 
effects of substructure uncertainty on synthesized system response using component mode 
synthesis techniques (CMS).  The CMS approach has been used for years to solve large 
structural dynamics problems, and is built into many standard finite element analysis codes.  
None of the work mentioned in this area addresses the test-analysis correlation component of 
model validation, at either the substructure or system level. 
 
Within this new model validation paradigm, there is no system test data available; therefore 
strictly speaking, there can be no system model validation, or even correlation.  Instead, a 
probabilistic system correlation must be performed by quantifying uncertainty in the system’s 
substructures and their interfaces, and then propagating it into the system correlation metrics.  
Several critical questions must be addressed, such as, what constitutes a correlated system model 
with respect to tolerance for failure, and how does uncertainty and error in the substructures 
propagate into, and affect the probability of system model correlation?  In this work, a new 
systematic procedure is developed for studying the effects of substructure uncertainty on the 
system test-analysis correlation of complex spacecraft that are validated on a substructure-by-
substructure basis.  The uncertainty is quantified either in terms of the difference between test 
and FEM frequency response, or accepted modal correlation metrics.  At the substructure level, 
the uncertainty can be obtained from a series of vibration tests and associated test-analysis 
correlations, a database of previous test-analysis correlation results of similar structures, 
specified by the user, etc. 
 
The objective is to be able to quantify the level of test-analysis correlation required at the 
substructure level to produce acceptable correlation for the system. Due to its universal 
acceptance within the aerospace community, a Craig-Bampton (CB) based component mode 
synthesis and reduced order modeling approach is utilized.  The proposed procedure is of special 
interest in systems with high modal density, where modal methods do not work.  Understanding 
substructure correlation requirements will positively impact the speed of the loads analysis 
process.   
 
The product of this project is a complete and systematic procedure for studying the effects of 
substructure uncertainty on the test-analysis correlation of complex spacecraft that are validated 
on a substructure basis.  In many situations, it is either impossible to perform a system vibration 
test, or it is highly desirable to avoid one to conserve time and resources.  Therefore, a 
probabilistic system correlation must be performed by quantifying uncertainty in the system’s 
substructures, and then propagating it into the system correlation metrics.  This work is 
significant to the Air Force because it must make critical decisions concerning space structure 
performance and survivability based on the results of test-analysis correlation.  
 

2.0  SIGNIFICANT RESEARCH ACCOMPLISHMENTS 
 
2.1  Quantification of Uncertainty Using Modal Correlation Metrics 
Uncertainty in the substructures is quantified in terms of uncertainty in the substructure test-
analysis correlation metrics, modal frequency and cross-orthogonality.  In this case, the 
substructures are assumed to have been tested in a free-free configuration.  The uncertainty is 
defined with respect to the nominal substructure FEM.  The nominal substructure modes are 
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assumed to be normalized with respect to mass, such that the nominal substructure modal mass 
and stiffness are m = I  and k = ! , where !  is the diagonal matrix of nominal eigenvalues.  The 
“truth” model of the substructure can also be represented in nominal modal coordinates as mT  
and kT .  Using linear perturbation theory, uncertainty in the correlation metrics, cross-
orthogonality !" , and frequency !" , can be related to uncertainty in the substructure modal 
mass and stiffness !m  and !k .   
 
One of the main contributions is the derivation of the form of the substructure modal mass and 
stiffness covariance matrices in terms of test- or truth-analysis correlation uncertainty using 
analytical and numerical experimentation results.  It was assumed that the expected values of the 
uncertainty in the substructure physical mass and stiffness matrices, E !M( )  and E !K( ) , are 
both zero.  The same is then true for the modal matrices, E !m( ) = 0  and E !k( ) = 0 .  This then 
implies that the expected value of the uncertainty in the generalized masses, E !Mjj( ) = 0 , and 

the expected value of uncertainties in natural frequencies, E !" j( ) = 0 .  Uncertainties in mass 
and stiffness were assumed to be independent, and therefore, uncorrelated.  It can then be shown 
that the variance of the off-diagonal substructure modal mass uncertainty terms is given by 
 

 E !mij
2( ) = " j # "i

" j +"i

E !$ ij
2( ) # E !$ ji

2( )%& '(  (1) 

 
The variance of the diagonal modal stiffness uncertainty can be computed using 
 
 E !kjj

2( ) = 4" jE !# j
2( ) $ " j

2E !Mjj
2( )  (2) 

 
while the variance of off-diagonal terms !kij  is given by 
 

 E !kij
2( ) = " j # "i

" j +"i

" j
2E !$ ji

2( ) # "i
2E !$ ij

2( )%& '(  (3) 

 
Using numerical experiments, it was shown that the off-diagonal cross-orthogonality uncertainty 
terms !" ij  are not only zero mean, but normally distributed, and within each column, 
independent.  It was also demonstrated that the term cj = 1! " jj

2  is the sum of the squares of 
nm !1  zero mean, normally distributed variables !" ij .  If the terms !" ij  all had unit variance, cj  
would be represented by a chi-square distribution with nm !1  degrees of freedom.  In this case, 
however, the off-diagonal terms !" ij  will have different non-unit variances.  Therefore, cj  
follows a generalized chi-square distribution.  In general, the number of degrees of freedom is 
not equal to nm !1  because many of the nominal FEM modes do not couple strongly with the jth 
truth mode, meaning many of the terms !" ij  are small.  As the number of terms that significantly 
contribute increases, the probability distribution approaches a normal distribution.  In terms of 
standard normal variables zi , cj  can be written as 
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 cj = 1! " jj
2 = # i

2zi
2

i=1
i!j

nm

$  (4) 

 
where ! i

2 = E "# ij
2( )  are the off-diagonal cross-orthogonality variances recovered for the jth 

column.  A distribution for cj  can then be constructed by taking a linear combination of single 
degree of freedom chi-square distributions ! 2 1( ) .  The 1!"( ) th percentile for cj  can easily be 
computed and then the corresponding value for the jth cross-generalized mass, given 
by! jj" = 1# c j" , can be compared to designated correlation metric criteria. 
 
A simple representation of a communications satellite, shown in Fig. 1, was used as a numerical 
example.  The substructure that was be considered for uncertainty propagation consists of the 
Earth pointing (+Z) reflector and tower that is mounted to the top of the bus via bars as shown in 
the figure.  
 
 
 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Finite element model of Qsat communications satellite. 

 
A numerical experiment was performed to investigate the probability distributions of the 
correlation metric terms of interest.  The Maximum Entropy approach was used to randomize the 
nominal substructure fixed interface mass and stiffness matrices using a dispersion value of 
3.0%.  The corresponding modes and frequencies were computed and compared with the 
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nominal modal parameters to yield frequency errors and cross-orthogonalities for 100,000 
iterations.  As expected, it was found that the uncertainties in the generalized masses, !Mjj , 
frequencies, !" j , and off-diagonal cross-orthogonalities, !" ij , are all zero mean and normally 
distributed.  Figure 2 illustrates the estimate of a typical off-diagonal cross-orthogonality 
probability distribution.   
 

 
Fig. 2.  Estimated PDF for cross-orthogonality term !" 5,4 . 

 
Figure 3 shows the estimated generalized chi-square probability distribution for the term 
c21 = 1! " 21,21

2 , corresponding to free substructure mode 21.  The distribution is somewhat 
skewed to the right because a relatively small number of off-diagonal terms in this column of the 
cross-orthogonality matrix contribute significantly.  The theoretical details of this investigation 
and methods derivation can be found in Ref. [1]. 
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Fig. 3.  Estimated PDF for 1! " 21,21

2 . 

 

2.2  Quantification of Uncertainty Using Frequency Response 
In previous section, uncertainty was quantified in terms of test-analysis modal correlation 
metrics.  This is plausible in the case of widely spaced modal frequencies, but it quickly breaks 
down in the case where there are a large number of closely spaced modes.  Quantifying 
uncertainty directly in terms of the frequency response of the structure can circumvent the 
problem of closely spaced modes, or high modal density.  This also makes more sense in general, 
because ultimately, it is the uncertainty in the response of the structure that is of importance in 
test-analysis correlation. 
 
The uncertainty in the frequency response can be defined as the difference between the “truth”, 
or test, model and the nominal FEM, and can be expressed in the form 
 
 !Hsai = HTsai " Hsai = #s!hi#a

T  (5) 
 
where !hi  is the uncertainty in the modal frequency response relative to the nominal model 
modal space at frequency ! i , and !s  and !a  represent the nominal modal matrix row-partitioned 
to the sensor and input locations, respectively.  Due to variations and uncertainties in geometry, 
material parameters, construction, testing, etc., there is actually an ensemble of truth models.  
Using the fact that the product of hi  and the modal impedance matrix zi  is an identity matrix, 
linear perturbation can be used to relate uncertainty in modal impedance to uncertainty in 
physical displacement frequency response as 
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 !Hssi = "#shi!zihi#s
T  (6) 

 
It is important to note that the proposed covariance propagation approach is only as accurate as 
the linear perturbation relation.  
 
In order to propagate uncertainty, Eq. (6) must be vectorized using the vec(X)  operator, in 
which the columns in matrix X are stacked column-wise.  Applying this to Eq. (6) produces 
 
 vec !Hssi( ) = " #shi $#shi[ ]vec !zi( )  (7) 
 
in which the symbol !  represents the Kronecker product between two matrices.  Memory 
requirements and computational effort can be minimized by taking advantage of the fact that 
both !Hssi  and !zi  are symmetric.  Defining the simplifying notation, !pHi = vec !Hssi( ) , 
!pzi = vec !zi( ) , and Ri = ! "shi #"shi[ ] , forming the product of Eq. (7) with its conjugate 
transpose *, and then taking the expectation, gives 
 
 E !pHi!pHi

*( ) = C!Hi = RiE !pzi!pzi
*( )Ri* = RiC!ziRi

*  (8) 
 
in which C!Hi  and C!zi  are the covariance matrices for uncertainty in the frequency response and 
modal impedance matrices at frequency ! i , respectively.  Using Eq. (8), covariance in modal 
impedance can be propagated into covariance in physical frequency response.  Terms on the 
diagonal of C!Hi  are real, and represent the mean-square value of the magnitude of the individual 

frequency response uncertainties, !Hlki
2 .  Following the same procedure, but now taking the 

usual transpose results in  
 
 
 E !pHi!pHi

T( ) = S!Hi = RiE !pzi!pzi
T( )RiT = RiS!ziRi

T  (9) 
 
where S!Hi  and S!zi  are symmetric matrices, termed relation matrices.  Terms on the diagonal of 
S!Hi  are complex, and represent the mean-square value of the individual frequency response 

uncertainties, !Hlki
2 .  The complete second order statistical properties of the frequency response 

are specified by the two matrices C!Hi  and S!Hi .  Uncertainty will be quantified at the 
substructure level, and then propagated into the system using the frequency response covariance 
and relation matrices.   
 
Once uncertainty has been propagated into the system in the form of frequency response 
covariance and relation matrices, it is more convenient to recover uncertainty in magnitude and 
phase.  Uncertainty in frequency response magnitude and phase for the lk  input-output pair can 
be related to uncertainty in the corresponding real and imaginary parts using 
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where matrix Jlki , given by 
 

 Jlki =
Hlki( )R Hlki Hlki( )I Hlki

! Hlki( )I Hlki
2 Hlki( )R Hlki

2

"

#

$
$
$

%

&

'
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'

 

 
is evaluated using the nominal model at frequency ! i , and subscripts R and I denote real and 
imaginary parts.  Taking the expectation of the outer product gives 
  

 

Cpi =
! Hlki( )2 ! Hlki( ) !"lki( )
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#

$

%
%
%

&

'

(
(
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#

$
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%

&

'

(
(
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Jlki
T = JlkiCriJlki

T  (11) 

 
in which Cpi  and Cri  are the covariance matrices for the polar and rectangular forms of the 
corresponding frequency response pair, respectively.  The terms in Cri  can be recovered from 
the frequency response covariance C!Hi  and relation matrix S!Hi .  Diagonal terms in Cpi  
represent the mean-square values of the uncertainty in the frequency response magnitude and 
phase.  The theoretical details of this investigation and methods derivation can be found in Ref. 
[3]. 
 
2.3  Propagation of Substructure Uncertainty into Craig-Bampton Representation   

The CB substructure representation is well suited as a building block for model validation of 
substructured systems.  The rth substructure representation is generated using the coordinate 
transformation 
 

 ur =
uo
r

ua
r

!
"
#

$#

%
&
#

'#
= (o

r ) r

0 I

*

+
,
,

-

.
/
/

qr

ua
r

!
"
#

$#

%
&
#

'#
= TCB

r uCB
r  (12) 

 
in which ua

r  represents the displacement of the substructure interface, and uo
r  is the displacement 

of the interior of the substructure.  This representation is characterized by a combination of fixed 

interface substructure mode shapes, !o
r , and a set of static shapes, !r = " rT I#

$
%
&
T

, called 

constraint modes.  The substructure mass and stiffness matrices in the CB space are then given 
by 
 
 MCB

r = TCB
rTM rTCB

r            KCB
r = TCB

rTK rTCB
r  (13) 
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where M r  and Kr  are the substructure physical mass and stiffness matrices, respectively.  A 
significant reduction in model size can be achieved by truncating the number of fixed-interface 
modes based on frequency.   
 
The uncertainty in substructure modal mass can be related to the uncertainty in the CB mass 
matrix using 
 
 !mr = "CB

rT !MCB
r "CB

r  (14) 
 
where !CB

r  are the mass normalized nominal free substructure modes of interest in CB 
coordinates.  Uncertainty in the substructure modal mass and modal stiffness are obtained from a 
substructure test-analysis correlation process using modal correlation metrics as described in 
Section 2.1.  Pre- and post-multiplying each side of Eq, (14) by MCB

r !CB
r  and its transpose, 

respectively, gives 
 
 MCB

r !CB
r "mr!CB

rT MCB
r = PT

rT"MCB
r PT

r = "MCBT
r  (15) 

 
in which matrix PT

r = !CB
r !CB

rT MCB
r  is an oblique projector onto the column space spanned by the 

nominal substructure target modes being considered in the correlation analysis.  Therefore, 
!MCBT

r  is the uncertainty in the CB mass matrix due to the substructure target modes.  
  
Using the vectorization procedure discussed in Section 2.2, the expression for mass uncertainty 
in Eq. (15) can be rewritten as 
 
 vec !MCBT

r( ) = RCBT
r " RCBT

r#$ %&vec !mr( )  (16) 
 
in which RCBT

r = MCB
r !CB

r .  Employing the simplifying notation, !pMCBT

r = vec !MCBT
r( )  and 

!pm
r = vec !mr( ) , Eq. (16) becomes 

 
 !pMCBT

r = Rr!pm
r  (17) 

 
Variance in the free substructure modal mass can be related to variance in the CB substructure 
mass using linear covariance propagation.  Taking the expectation of the outer product of Eq. 
(17) with itself gives 
 
 E !pMCBT

r !pMCBT

rT( ) = C!MCBT

r = RrE !pm
r !pm

rT( )RrT = RrC!m
r RrT  (18) 

 
in which C!MCBT

r  and C!m
r  are the covariance matrices for uncertainty in CB substructure mass 

and free interface substructure modal mass, respectively.  The analogous equation relating 
stiffness is given by 
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 C!KCBT
r = RrC!k

r RrT  (19) 
 
The diagonal terms in the covariance matrices correspond to the mean square values, or 
variances, of the mass and stiffness uncertainties in the corresponding vector !pX .  Through 
extensive numerical experimentation, it was found that, for sufficient uncertainty, the covariance 
matrices for both the modal mass and stiffness are diagonal, meaning that the terms within each 
of the vectors !pm

i  and !pk
i  are uncorrelated.   

 
As discussed in Section 2.2, it is assumed that statistics for frequency response uncertainty are 
available in the form of covariance, C!Hi

r , and relation matrices, S!Hi
r , for each substructure of 

interest in the system.  This data may come from a series of vibration tests, a database of 
experimental results for similar structures, analytical results based on substructure Monte Carlo 
(MC) analysis, etc. 
 
In order to recover uncertainty in the substructure CB matrices quantified in terms of frequency 
response, a series of computations must be performed.  First, the uncertainty in the rth 
substructure modal impedance must be recovered from Eq. (6).  It is assumed that sensors have 
been placed on the substructure such that all of the nominal model modes that contribute 
significantly in the frequency range of interest, including rigid body modes, are linearly 
independent.  It is also assumed that a reduced mass representation, or test-analysis model 
(TAM), for the substructure, MTAM

r , has been developed.  The TAM contains only sensor degrees 
of freedom.  For example, the Modal, or Hybrid TAM, can be used to give an exact mass 
representation of the nominal substructure in the desired frequency range.  If the nominal modes 
are mass normalized, then Eq. (6) for the rth substructure can be post-, and pre-multiplied by 
Qsi

r = MTAM
r !s

rzi
r , and its transpose, respectively, to yield 

 
 !zi

r = "zi
r#s

rT MTAM
r !Hssi

r MTAM
r #s

rzi
r = Qsi

rT!Hssi
r Qsi

r  (20) 
 
All matrices, except the uncertainties, are evaluated using the nominal FEM.  The uncertainty in 
the rth substructure modal impedance can be related to the corresponding uncertainty in the CB 
substructure representation, !ZCBi

r , using 
 
 !zi

r = "CB
rT !ZCBi

r "CB
r  (21) 

 
in which !CB

r  are the substructure modes in the CB coordinates.  Equation (20) can be pre- and 
post-multiplied by QCB

r = MCB
r !CB

r  and its transpose, respectively, to produce 
 
 MCB

r !CB
r "zi

r!CB
rT MCB

r = PT
rT"ZCBi

r PT
r = "ZCBTi

r  (22) 
 
in which the matrix PT

r = !CB
r !CB

rT MCB
r  is an oblique projector onto the column space spanned by 

the nominal substructure modes being used in the analysis.  The projector spatially filters out any 
undesired modal contributions.  Therefore, !ZCBTi

r  is the uncertainty in the CB impedance matrix 
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due to the substructure modes that are dynamically important in the frequency range of interest.  
Equation (20) then yields 
 
 !ZCBTi

r = QCB
r Qsi

rT!Hssi
r Qsi

rQCB
rT  (23) 

 
or using the vectorization procedure from the previous section 
 
 !pZCBTi

r = vec !ZCBTi
r( ) = " QCB

r Qsi
rT #QCB

r Qsi
rT$% &'vec !Hssi

r( ) = "RCBsi
r !pHi

r  (24) 
 
Following the process outlined previously, the covariance and relation matrices for the 
uncertainty in the rth substructure CB impedance matrix can be recovered from the 
corresponding substructure frequency response uncertainties. 
 
Quantifying the frequency response uncertainty in terms of the substructure CB impedance 
matrices, and then propagating into the system using CMS, has a significant advantage over 
methods that use direct assembly of substructure frequency response, in that translations and 
rotations at substructure interfaces do not have to be measured.  The theoretical details of this 
investigation and methods derivation can be found in Refs. [2] and [3]. 
 
2.4  Propagation of Substructure Uncertainties into System Level Matrices 
The system matrices can be synthesized from the CB substructure representations by applying 
the appropriate constraints at the substructure interfaces.  The uncoupled system displacement 
vector uG  can be related to the coupled system displacement vector uSYS  using the 
transformation  
 

 

 

uG =

uCB
1

uCB
2

!
uCB
nsub

!

"

#
#

$

#
#

%

&

#
#

'

#
#

=

T 1

T 2

!
T nsub

(

)

*
*
*
*

+

,

-
-
-
-

uQ
uA

!
"
#

$#

%
&
#

'#
= TuSYS  (28) 

where 

 
 
uQ = q1T q2T ! qnsubT{ }T  

 
is a partition of the coupled system displacement containing all of the component modal degrees 
of freedom from the substructures, and uA  is the partition containing all the non-redundant 
substructure interface degrees of freedom.  
   
Uncertainty in the uncoupled CB substructure mass matrices can be related to the uncertainty in 
the system coupled modal mass matrix using the expression 
 

 
 
!MSYS = "SYS

T T T!MGT"SYS = "SYS
T T rT!MCBT

r T r"SYS
i=1

nsub

#  (29) 
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where !SYS  are the system modes of interest.  Using the procedure outlined in the previous 
sections for substructures, the system modal mass covariance matrix can be written in the 
compact form 
 

 
 
C!MSYS

= W rC!MCBT

r W rT

i=1

nsub

"  (30) 

 
in which matrices W r = !SYS

T T rT "!SYS
T T rT#$ %& , and it is assumed that the individual substructure 

uncertainties are uncorrelated with one another.  A parallel analysis produces the same form for 
the system modal stiffness uncertainty 
 

 
  
C! KSYS

= W rC!KCBT
r W rT

i=1

nsub

"  (31) 

 
The mean square values of the uncertainties in the system modal mass and stiffness matrices can 
then be recovered from the diagonal of the matrices   C! MSYS

 and   C! KSYS
, respectively.  Once the 

uncertainty in the system modal mass and stiffness is recovered, the uncertainty in the system 
modal correlation metrics can be determined using the methods presented in Section 2.1.  It was 
shown that the variance of the off-diagonal system cross-orthogonality terms can be expressed as 
 

 
  

E !" SYSij
2( ) = 1

#SYSi $ #SYSj( )2
E ! KSYSij

2( ) +#SYSj
2 E ! MSYSij

2( )%& '(  (32) 

 
where !SYSi  is the ith system eigenvalue.  The variance of the system natural frequencies is given 
by 

 
  
E !"SYSj

2( ) = 1
4#SYSj

E ! KSYSjj
2( ) +#SYSj

2 E ! MSYSjj
2( )$% &'  (33) 

 
Following the same procedure, the system modal impedance covariance matrix is then given by 
 

 
 
C!ZSYSi

= W rC!ZCBTi
r W rT

r=1

nsub

"  (34) 

 
The corresponding system modal impedance relation matrix is then 
 

 
 
S!ZSYSi

= W rS!ZCBTi
r W rT

r=1

nsub

"  (35) 

 
The uncertainty in the physical system frequency response at the desired nsSYS  output locations 
due to naSYS  selected input locations is 
 
  !HSYSsai = "TsPHSYSi!ZSYSiHSYSiTaP

T  (36) 
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where TsP  is the transformation from system modal coordinates p to the selected output locations 
and TaP  is the corresponding transformation to the physical input locations.  The covariance 
matrix for the system physical frequency response can then be recovered from the system modal 
impedance covariance matrix using 
 
  C!HSYSi

= YiC!ZSYSi
Yi
*  (37) 

 
The corresponding system frequency response relation matrix is then 
 
  S!HSYSi

= YiS!ZSYSi
Yi

T  (38) 
 
Uncertainty in system frequency response magnitude and phase can then be recovered the results 
from Section 2.2.   
 
A simple example is considered to illustrate the application of the proposed uncertainty 
propagation technique.  The system consists of two steel beam substructures attached in the 
shape of a T.  Both substructures are constrained to plane motion.  For illustration, only 
substructure 2 is assumed to have uncertainty.  The uncertainty is quantified in terms of test-
analysis modal correlation metrics discussed in Section 2.1.  In this example, it is assumed that 
correlation uncertainty is available for the first 20 elastic modes of substructure 2.  The free-free 
vibration test results were simulated using Monte Carlo analysis.  At each iteration, the nominal 
physical mass and stiffness matrices for substructure 2 were randomized using the Maximum 
Entropy approach.  In this example, a dispersion level of 15% was selected for both mass and 
stiffness, and 10,000 iterations were performed.  The resulting test-analysis correlation statistics 
for substructure 2 in the form of RMS cross-orthogonality matrix is illustrated in Fig. 4.  The 5th 
percentile for cross-generalized mass, ! jj0.95 , indicates that modes 10, 11, 15, 16, 19, and 20 do 
not pass the AF criterion for cross-orthogonality, ! jj " 0.95 , with 95% confidence.  Maximum 
one-sigma off-diagonal cross-orthogonality terms indicate that only modes 1 through 8 pass the 
AF criterion ! ij " 0.10  with 95% confidence.  Taking the intersections of the results, only the 
first 8 elastic modes for random substructure 2 strictly pass all of the AF correlation criteria at 
the 95% confidence level.  Uncertainties in the modal mass and stiffness for the first 20 elastic 
modes of substructure 2 are recovered from the test-analysis correlation uncertainty.  Figure 5 
shows the recovered RMS modal mass uncertainty.  The uncertainties in the substructure 2 
modal matrices were then propagated into uncertainties in the corresponding CB representation, 
and then into the modal mass and stiffness uncertainties for the first 20 elastic system modes.  
Figure 6 shows the corresponding recovered RMS system cross-orthogonality matrix.  
Correlation statistics predicted using a Monte Carlo analysis validated the accuracy of the 
proposed covariance propagation approach.  Both methods predict that only the first 10 system 
modes strictly pass all of the AF correlation at the 95% confidence level.  The theoretical details 
of this investigation and methods derivation can be found in Ref. [2]. 
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Fig. 4.  Substructure 2 RMS cross-orthogonality. 

 
 

 
Fig. 5.  Substructure 2 rms modal mass uncertainty. 
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Fig. 6. System RMS cross-orthogonality for first 20 elastic modes. 

 
The same example is used to illustrate the propagation of the uncertainty in the substructure-2 
velocity frequency response, that is spanned by the first 20 nominal elastic modes, into the 
system velocity frequency response.  Covariance and relation matrices for the substructure-2 
impedance matrix in CB coordinates were derived at 200 evenly spaced frequencies from 0.0 to 
6000.0 Hz.  Using the proposed CMS based covariance propagation procedure, the system modal 
impedance covariance and relation matrices were then recovered.  Next, the associated 
covariance and relation matrices for system velocity frequency response were derived, and then 
finally uncertainty in system velocity frequency response magnitude and phase were predicted.  
The accuracy of the proposed covariance propagation procedure is demonstrated by comparing 
propagation results with a corresponding 10,000 iteration system MC analysis.   
 
Figure 7 compares the standard deviation of a system level drive point velocity frequency 
response magnitude predicted using the covariance propagation analysis with the results of a full 
MC analysis.  Figure 8 shows the corresponding for standard deviation in phase.  In both cases, 
the results predicted using covariance propagation agree very well with the results predicted 
using a full MC analysis at both isolated resonances, and in regions of closely spaced mode pairs.  
It was found in previous work performed during this investigation that uncertainty propagation 
using modal correlation metrics performed very poorly for these mode pairs.  The magnitude of a 
nominal model velocity drive point frequency response is shown in Fig. 9.  In addition, the 95th  
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Fig. 7.  Standard deviation of drive-point velocity frequency response magnitude at dof 301x. 

 

 
Fig. 8. Standard deviation of drive-point velocity frequency response phase at dof 301x. 
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Fig. 9.  Drive-point velocity frequency response magnitude at dof 301x. 

 
percentile from the MC simulation, and the nominal response plus 1.65 standard deviations 
predicted by covariance propagation are illustrated.  The close agreement of these last two curves 
indicates that for this particular case, the magnitude of the velocity frequency response is 
normally distributed. The MC analysis validates the accuracy of the proposed frequency 
response uncertainty propagation procedure.  However, the propagation approach offers a 
significant computation time advantage over the MC analysis. The theoretical details of this 
investigation and methods derivation can be found in Ref. [3]. 
 

3.0  CONCLUSION  

This research project has produced a complete and systematic procedure for studying the effects 
of substructure uncertainty on the test-analysis correlation of complex spacecraft that are 
validated on a substructure-by-substructure basis, using test and analysis comparisons. The 
uncertainty is quantified in terms of accepted modal test-analysis correlation metrics, and 
covariance and relation matrices associated with the differences in the test and FEM frequency 
response.  Linear perturbation analysis is used to relate uncertainty in correlation metrics to 
uncertainty in substructure matrices.  Covariance propagation is then used to propagate 
substructure uncertainty into the expected correlation metric uncertainty for the system using a 
Craig-Bampton based component mode synthesis approach.  The frequency response based 
procedure is of special interest in systems with high modal density, where modal methods do not 
work.  The results of this research are significant to the Air Force because critical decisions 
concerning space structure performance and survivability are made based on the results of test-
analysis correlation.  In many situations, it is either impossible to perform a system vibration test, 
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or it is highly desirable to avoid one to conserve time and resources.  If modeling and analysis 
are to replace system tests, then it is imperative to have confidence in the results.  
Correlation/validation is the path to providing this confidence and determining the predictability 
of models used in the decision making process.  Within this new validation paradigm, there is no 
system level test data available.  Therefore, a probabilistic system correlation must be performed 
by quantifying uncertainty in the system’s substructures, and then propagating it into the system 
correlation metrics.  An understanding of substructure correlation requirements will positively 
impact the speed of the loads analysis process, and reduce time to space. 
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APPENDIX 

This Appendix contains listings of the main Matlab computer algorithms developed during the 
course of this project.  Documentation on the use of the computer codes is listed in the files 
themselves.  Table A-1 lists function “recover”.  This function recovers correlation metric 
variances.  Table A-2 lists function “xcovmatfull”.  This function generates modal matrix 
covariance matrices.  Table A-3 lists function “xrandcbKM2”.   This function uses random 
matrix theory to generate random systems and corresponding statistics.  Table A-4 lists function 
“xrecovermag”.  This function recovers uncertainty in frequency response magnitude and phase.  



 1 

Table A-1.  Function “recover” recovers correlation metric variances. 
 

function [rmsw,rmsCO,CGM05] = recover(msM,msK,L); 
% 
%   Created by:     Daniel C. Kammer 
%                   Professor 
%                   Dept of Engineering Physics 
%                   University of Wisconsin 
%                   Madison, WI  53706 
%                   (608) 262-5724 
% 
% 
%  ================================================================= 
% 
% This function recovers the correlation metric variances from the 
% mean square modal mass and stiffness uncertanties: 
% 
% 
% 
%  HISTORY 
%  ======= 
% 
%    Created:  Daniel C. Kammer       1-09-10 
% 
%    Updated: 
%               3-27-10   DCK    corrections made to frequency uncertainty 
%                                recovery 
% 
%  ======================================================================= 
% 
%  INPUT 
%  ===== 
%  L       =  elastic modal eigenvalues  -  n x 1 
% 
%  msM     = mean square modal mass uncertainty  -  n x n 
% 
%  msK     = mean square modal stiffness uncertainty  -  n x n 
% 
%  OUTPUT 
%  ====== 
% 
%  rmsw  = rms frequency uncertainty  -  n x 1 
% 
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%  rmsCO = rms Cross-Ortho  -  n x n 
% 
%  CGM05 = 95th percentile of CGM assuming a generalized chi-square dist 
% 
%  Use:  [rmsw,rmsCO] = recover(msM,msK,L); 
%======================================================================= 
% 
Date=date 
% 
n = size(L,1); 
nb = n*(n+1)/2; 
jj = 0; 
% 
rmsw = zeros(n,1);                                                      % designate space 
rmsCO = zeros(n,n);                                                     % designate space 
msCO = zeros(n,n);                                                     % designate space 
CGM05 = zeros(n,1);                                                     % designte space 
% 
for j = 1:n     
    x = zeros(100000,1);                                                % designate space  
    for i = 1:n 
                     
            if i == j 
                 
                rmsw(i) = sqrt((msK(i,i) + (L(i)^2)*msM(i,i))/(4*L(i))); % rms freq 
                                                                                 
            else 
                 
                msCO(i,j) = (msK(i,j) + (L(j)^2)*msM(i,j))/(L(i)-L(j))^2; % ms off-diag 
                 
                x = x + msCO(i,j)*chi2rnd(1,100000,1); 
                             
            end 
    end 
     
    msCO(j,j) = 1 - sum(msCO(:,j));                    % CGM    
    x = sort(x);     
    CGM05(j) = sqrt(1-x(95000)); 
     
end 
  
rmsCO = sqrt(msCO);                                    % rms CO 
%rmsCO = (msCO);  
end 
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Table A-2.  Function “xcovmatfull” generates modal matrix covariance matrices. 
 

function [Cm,Ck] = xcovmatfull(L,stdw,stdm,rmsCO); 
% 
%   Created by:     Daniel C. Kammer 
%                   Professor 
%                   Dept of Engineering Physics 
%                   University of Wisconsin 
%                   Madison, WI  53706 
%                   (608) 262-5724 
% 
%  ================================================================= 
% 
% This function generates the modal mass and stiffness covariance matrices 
% based on the uncertainty matrices stacked by column and then truncated to 
% the lower triangular partition: 
% 
%     vech(deltam) and vech(deltak) 
% 
%  Covariance matrices are based on user provided rms uncertainties in 
%  frequencies, generalized masses, and cross-orthogonality 
% 
%  Allows user to generate covariance matrices for a smaller number of 
%  modes than frequencies in L, and then the matrices are expanded to size 
%  of modes in L using zeros.  This allows the user to use the same 
%  transformation matrix in covariance propagation, but trying various 
%  numbers of modes in the propagation. 
% 
%  HISTORY 
%  ======= 
% 
%    Created:  Daniel C. Kammer       07-27-10 
% 
%    Modified:        
% 
%  ======================================================================= 
% 
%  INPUT 
%  ===== 
%  L       =  elastic nominal modal eigenvalues  -  n x 1 
% 
%  stdw    =  standard deviation of frequencies in percent  - n x 1 
% 
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%  stdm =  standard deviation in modal masses  -  n x 1 
% 
%  rmsCO   =  rms cross-orthogonality matrix  -  n x n 
% 
% 
%  OUTPUT 
%  ====== 
% 
%  Cm  = modal mass covariance matrix  -  [n(n+1)/2] x [n(n+1)/2] 
% 
%  Ck = modal stiffness covariance matrix  -  [n(n+1)/2] x [n(n+1)/2] 
% 
% 
%  Use:  [Cm,Ck] = xcovmatfull(L,stdw,stddelm,rmsCO); 
%======================================================================= 
% 
Date=date 
% 
nr = input('Number of Modes to Propagate  -  ')               % prompt for number of modes to compute cov 
% 
n = size(L,1); 
nb = nr*(nr+1)/2; 
jj = 0; 
% 
w = sqrt(L);                                                           % nominal natural frequencies 
% 
stdw = stdw/100; 
% 
s = rmsCO.^2;                                                 % variance of crodd-ortho 
% 
Cm = zeros(nb,1);                                                    % initialize mass covariance matrix 
Ck = zeros(nb,1);                                                    % initialize stiffness covariance 
matrix 
% 
%  Build Covariance Matrices 
%  ------------------------- 
  
for j = 1:nr 
     
    for i = 1:nr 
         
        if i >= j 
            jj = jj+1; 
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            if i == j 
                                 
                Cm(jj) = stdm(j)^2;                                     % diagonal mass variance 
                Ck(jj) = 4*L(j)*(stdw(j)^2)*L(j) - (L(j)^2)*stdm(j)^2;     % diagonal stiffness variance 
                 
                                 
            else 
                GijGji = -[L(j)*s(j,i) + L(i)*s(i,j)]/[L(i)+L(j)];   % mean value of Gij*Gji 
                Cm(jj) = s(j,i) + s(i,j) + 2*GijGji;                 % off-diag mass variance 
                Ck(jj) = (L(j)^2)*s(j,i) + (L(i)^2)*s(i,j) + 2*L(i)*L(j)*GijGji; % off-diag stiffness var 
                             
            end 
        end 
    end 
end 
  
  
if n > nr 
     
   [Sn,Sni] = dupmat(n); 
   [Snr,Snri] = dupmat(nr); 
   Cm = Snri * Cm;                                                   % expand to nr^2 size vector 
   Ck = Snri * Ck;                                                   % expand to nr^2 size vector 
    
   msm = reshape(Cm,nr,nr);                                          % ms dm 
   msk = reshape(Ck,nr,nr);                                          % ms dk 
    
   msm = [msm zeros(nr,n-nr); zeros(n-nr,n)];                        % expand to nxn 
   msk = [msk zeros(nr,n-nr); zeros(n-nr,n)];                        % expand to nxn 
    
   Cm = Sn * msm(:);                                                 % transform to vech 
   Ck = Sn * msk(:);                                                 % transform to vech 
    
end 
  
Cm = diag(Cm); 
Ck = diag(Ck); 
  
end 
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function [Sn,Sni] = dupmat(n); 
% 
%   Created by:     Daniel C. Kammer 
%                   Professor 
%                   Dept of Engineering Physics 
%                   University of Wisconsin 
%                   Madison, WI  53706 
%                   (608) 262-5724 
% 
%  ================================================================= 
% 
% This function generates "Duplication Matrix" Sn and its inverse Sni 
% such that: 
% 
%      vech(X) = Sn * vec(X) 
%      vec(X) = Sni * vech(X) 
% 
%  where X is a square symmetric matrix and vech(X) is the vectorized lower 
%  triangular partition of X, by column. 
% 
% 
%  HISTORY 
%  ======= 
% 
%    Created:  Daniel C. Kammer       12-4-09 
% 
%  ======================================================================= 
% 
%  INPUT 
%  ===== 
%  n       =  dimension of X 
% 
%  OUTPUT 
%  ====== 
% 
%  Sn  = nth order duplication matrix  -  [n(n+1)/2] x n^2 
% 
%  Sni = inverse of nth order duplication matrix  -  n^2 x [n(n+1)/2] 
% 
% 
% 
%  Use:  [Sn,Sni] = dupmat(n); 
%======================================================================= 
% 
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Date=date 
% 
nb = n*(n+1)/2; 
n2 = n^2; 
% 
in = [1:n2]'; 
in = reshape (in,n,n);                  % transform "in" to nxn 
% 
S = eye(n2,n2); 
% 
jj = 0; 
kk = 0; 
ia = zeros(1,nb); 
% 
for i = 1:n 
     
    for j = 1:n 
         
        if j >= i 
            jj = jj+1; 
            ia(jj) = in(j,i); 
            if j > i 
                S(:,in(j,i)) = S(:,in(j,i)) + S(:,in(i,j)); 
            end 
        end 
    end 
end 
  
Sn = eye(n2); 
Sn = Sn(ia,:); 
  
Sni = S(:,ia); 
  
clear S 
  
end 
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Table A-3.  Function “xrandcbKM2” uses random matrix theory to generate random systems 
and corresponding statistics. 

 
function 
[Cdm,Cdk,CdKPHI,CdMPHI,dvarm,dvark,dvarKcb,dvarMcb,dvarKPHI,dvarMPHI,dL,Lr,CGMr]=xrandcbKM2(K,M,Tcb,io,ia); 
% 
%   Created by:     Daniel C. Kammer 
%                   Professor 
%                   Dept of Engineering Physics 
%                   University of Wisconsin 
%                   Madison, WI  53706 
%                   (608) 262-5724 
% 
% 
%  ================================================================= 
% 
%  This program uses random matrix theory to generate random 
%  stiffness and mass matrices and statistics for propagation of stiffness 
%  uncertainty subject to the constraints that the random matrices 
%  are symmetric and positive semidefinite. 
% 
%  It is assumed that the stiffness matrix has nr rigid 
%  body modes.  Statistics are derived for the full system,the CB 
%  representation, and the fixed system. 
% 
%  Soize, "Random Matrix Theory for Modeling Uncertainties in 
%  Computational Mechanics," Comp. Meth. Appl. Mech. and Eng., 2004. 
% 
% 
%  HISTORY 
%  ======= 
% 
%    Created:  Daniel C. Kammer       03-25-10 
% 
%  ======================================================================= 
% 
%  INPUT 
%  ===== 
%  K       =  nominal stiffness matrix  
% 
%  OUTPUT 
%  ====== 
% 
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%  CdK = stiffness uncertainty covariance matrix 
%  dKr = vectorized random stiffness by iteration 
% 
%  Use:  [CdK,dKr]=xrandK(K); 
%======================================================================= 
% 
Date=date 
% 
nit = input('Number of Iterations -')  % prompt for number of samples in ensemble 
% 
nr = input('Number of Rigid Body Modes -')  % prompt for number of rigid body modes 
% 
  
delm = input('Dispersion Level for Mass (%) -')  % prompt for dispersion level for mass matrix 
delk = input('Dispersion Level for Stiffness (%) -')  % prompt for dispersion level for mass matrix 
  
delm = delm/100; 
delk = delk/100; 
  
nm = size(K,1);                               % size of stiffness matrix 
no = size(io,1); 
n2 = nm^2; 
ne = nm - nr;                                 % number of elastic modes 
ncb = size(Tcb,2); 
na = size(ia,1); 
nq = ncb-na; 
  
mm = fix((no+1)/delm^2);                      % number of random vectors for mass matrix 
mk = fix((ne+1)/delk^2);                      % number of random vectors for stiffness matrix 
  
% 
  
dKr = zeros(n2,nit); 
dKrcb = zeros(ncb^2,nit); 
dMr = zeros(n2,nit); 
dMrcb = zeros(ncb^2,nit); 
dMrPHI = zeros(ncb^2,nit); 
dKrPHI = zeros(ncb^2,nit); 
dmr = zeros(nq^2,nit); 
dkr = zeros(nq^2,nit); 
CGMr = zeros(ncb^2,nit); 
  
Lr = zeros(nm,nit); 
Lrcb = zeros(ncb,nit); 
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Lrc = zeros(nq,nit); 
dLcb = zeros(ncb,nit); 
dLc = zeros(nq,nit); 
dL = zeros(nm,nit); 
  
Ms = [M(io,io) M(io,ia); M(ia,io) M(ia,ia)];  % resort mass matrix 
Ks = [K(io,io) K(io,ia); K(ia,io) K(ia,ia)];  % resort stiffness matrix 
  
Mcb = Tcb'*Ms*Tcb;                            % nominal mass in CB coords 
Kcb = Tcb'*Ks*Tcb;                            % nominal stiffness in CB coords 
  
% 
%  Compute Nominal Modes of Ks 
%  --------------------------- 
  
[PHI,L] = eig(Ks); 
[L,i] = sort(diag(L));                        % sort in ascending order 
PHI = PHI(:,i);                               % resort modes 
PHI = PHI*diag(diag(PHI'*PHI).^(-.5));        % normalize to unit length 
Le = L(nr+1:nm);                                 % elastic mode eigenvalues 
Pe = PHI(:,nr+1:nm);                             % elastic modes 
Lnm = diag(Le.^.5)*Pe';                       % decomposition:  Kb = Lnm'*Lnm 
  
Moo = M(io,io); 
Koo = K(io,io); 
  
Lm = chol(Moo);                               % Cholesky factorization of M 
  
Lc = sort(eig(Koo,Moo));                      % nominal fixed eigenvalues 
Lc = Lc(1:nq); 
  
[PHIcb,Lcb] = eig(Kcb,Mcb);                   % nominal CB eigenvalues and modes 
[Lcb,i] = sort(diag(Lcb));                    % sort in ascending order 
PHIcb = PHIcb(:,i);                           % resort modes 
PHIcb = PHIcb*diag(diag(PHIcb'*Mcb*PHIcb).^(-.5));        % normalize to unit mass 
  
  
L = sort(eig(K,M));                           % nominal free eigenvalues for full system 
  
for i = 1:nit 
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%  Randomize stiffness matrix 
%  -------------------------- 
     
    x = randn(ne,mk);                         % normal random vectors with zero mean and unit variance 
         
    Kr = Lnm'*(x*x')*Lnm/mk;                  % physical coordinates 
    dK = Kr - Ks; 
     
    dKr(:,i) = dK(:);                         % vectorized ith random stiffness uncertainty 
     
    Kr = Ks + dK; 
                  
%  Randomize mass matrix 
%  --------------------- 
     
    x = randn(no,mm);                         % normal random vector with zero mean and unit variance 
         
    mr = Lm'*(x*x')*Lm/mm; 
    Mr = [mr M(io,ia); M(ia,io) M(ia,ia)];    % sorted random mass matrix 
  
    dM = Mr - Ms;                             % sorted mass error 
    dMr(:,i) = dM(:);                         % vectorized ith random stiffness uncertainty 
     
    Mrcb = Tcb'*Mr*Tcb;                       % CB mass 
    dMcb = Tcb'*dM*Tcb;                       % mass uncertainty in CB space 
    dMrcb(:,i) = dMcb(:); 
    dMPHI = PHIcb'*dMcb*PHIcb;                % CB modal mass uncertainty 
    dMrPHI(:,i) = dMPHI(:); 
    dm = dMcb(1:nq,1:nq);                     % fixed mode mass uncertainty 
    dmr(:,i) = dm(:); 
     
    Krcb = Tcb'*Kr*Tcb; 
    dKcb = Tcb'*dK*Tcb; 
    dKrcb(:,i) = dKcb(:); 
    dKPHI = PHIcb'*dKcb*PHIcb;                % CB modal stiffness uncertainty 
    dKrPHI(:,i) = dKPHI(:); 
    dk = dKcb(1:nq,1:nq);                     % fixed mode stiffness uncertainty 
    dkr(:,i) = dk(:); 
     
    kr = Krcb(1:nq,1:nq);                     % fixed interface modal stiffness 
    mr = Mrcb(1:nq,1:nq);                     % fixed interface modal mass 
     
    Lr(:,i) = sort(eig(Kr,Mr));               % randomized eigenvalues of full substructure 
    dL(:,i) = Lr(:,i) - L;                    % uncertrainty in full system eigenvalues  
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    Lrcb(:,i) = sort(eig(Krcb,Mrcb));         % randomized eigenvalues of CB representation 
    dLcb(:,i) = Lrcb(:,i) - Lcb;              % uncertrainty in CB system eigenvalues 
     
    Lrc(:,i) = sort(eig(kr,mr));              % randomized eigenvalues of fixed representation 
    dLc(:,i) = Lrc(:,i) - Lc;                 % uncertrainty in fixed system eigenvalues 
 
    [PHIcbr,Lcbr] = eig(Krcb,Mrcb);           % random CB eigenvalues and modes 
    [Lcbr,iis] = sort(diag(Lcbr));            % sort in ascending order 
    PHIcbr = PHIcbr(:,iis);                   % resort modes 
    PHIcbr = PHIcbr*diag(diag(PHIcbr'*Mcb*PHIcbr).^(-.5));        % normalize to unit nominal mass 
     
    CGM = PHIcb'*Mcb*PHIcbr;                  % cross ortho 
    CGMr(:,i) = CGM(:);                       % vectorize 
         
end 
                                
CdKcb = cov(dKrcb');                          % covariance matrix for uncertainty in CB stiffness 
dvarKcb = reshape(diag(CdKcb),ncb,ncb);       % variance of CB stiffness uncertainty 
  
CdMcb = cov(dMrcb');                          % covariance matrix for uncertainty in CB mass 
dvarMcb = reshape(diag(CdMcb),ncb,ncb);       % variance of CB stiffness uncertainty 
  
CdKPHI = cov(dKrPHI');                        % covariance matrix for uncertainty in CB modal stiffness 
dvarKPHI = reshape(diag(CdKPHI),ncb,ncb);      % variance of CB modal stiffness uncertainty 
  
CdMPHI = cov(dMrPHI');                        % covariance matrix for uncertainty in CB modal mass 
dvarMPHI = reshape(diag(CdMPHI),ncb,ncb);     % variance of CB modal mass uncertainty 
  
Cdk = cov(dkr');                              % covariance matrix for uncertainty in fixed modal stiffness 
dvark = reshape(diag(Cdk),nq,nq);             % variance of fixed modal stiffness uncertainty 
  
Cdm = cov(dmr');                              % covariance matrix for uncertainty in fixed modal mass 
dvarm = reshape(diag(Cdm),nq,nq);             % variance of fixed modal mass uncertainty 
  
end 
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 Table A-4.  Function “xrecovermag” recovers uncertainty in frf magnitude and phase. 
 

function [dvarmag,dvartheta]=xrecovermag(varC,relS,H,f); 
% 
%   Created by:     Daniel C. Kammer 
%                   Professor 
%                   Dept of Engineering Physics 
%                   University of Wisconsin 
%                   Madison, WI  53706 
%                   (608) 262-5724 
% 
% 
%  ================================================================= 
% 
%  This program recovers uncertainty in magnitude and phase for frequency 
%  response.  Assumes collocated inputs and outputs. 
% 
% 
%  HISTORY 
%  ======= 
% 
%    Created:  Daniel C. Kammer       08-10-11 
% 
%  ======================================================================= 
% 
%  ns = number of sensors 
%  nf = number of frequency data points 
% 
%  INPUT 
%  ===== 
%  varC       =  diagonal of frf covariance matrices  -  ns^2 x nf 
%  relS       =  diagonal of frf relation matrices  -  ns^2 x nf 
%  f          =  vector of frequencies in Hz.  -  nf x 1 
%  H          =  nominal frf matrix  -  ns x ns x nf 
%   
%  OUTPUT 
%  ====== 
% 
%  dvarmag = variance of frf uncertainty in magnitude 
%  dvartheta = variance of frf uncertainty in phase (rad) 
% 
%  Use:  [dvarmag,dvartheta]=xrecovermag(varC,varS,H,f); 
%======================================================================================================= 
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% 
Date=date 
% 
  
nf = size(f,1);                                 % number of frequencies 
ns = size(H,1);                                 % number of sensors 
% 
J = zeros(2,2); 
Cri = zeros(2,2);                               % real/imag covariance at kk freq 
Cmt = zeros(2,2);                               % magnitude/theta covariance at kk freq 
  
dvarmag = zeros(ns^2,nf); 
dvartheta = zeros(ns^2,nf); 
  
for kk = 1:nf                                 % loop over frequencies 
     
    h = H(:,:,kk); 
    h = h(:);                                 % vectorize frf matrix at kk freq 
     
    for j = 1:ns^2 
        J(1,1) = real(h(j))/abs(h(j));       % construct J matrix 
        J(1,2) = imag(h(j))/abs(h(j)); 
        J(2,1) = -imag(h(j))/(abs(h(j))^2); 
        J(2,2) = real(h(j))/(abs(h(j))^2); 
         
        Cri(1,1) = .5*( varC(j,kk) + real(relS(j,kk)) ); % construct Cri matrix 
        Cri(2,2) = .5*( varC(j,kk) - real(relS(j,kk)) ); 
        Cri(1,2) = .5*imag(relS(j,kk)); 
        Cri(2,1) = Cri(1,2); 
         
        Cmt = J*Cri*J'; 
         
        dvarmag(j,kk) = Cmt(1,1);             % varianceof frf magnitude 
        dvartheta(j,kk) = Cmt(2,2);           % varianceof frf phase (deg) 
                         
    end 
  
end 
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